
CD ccop

N

SHORT ENCODINGS OF EVOLVING STRUCTURES

Daniel D. Sleator
Robert E. Tarjan

William P. Thurston

JUL0T 9 0 fl CS-TR-265-90

0 U
April 1990

App:oved foz public releaim

9 07 3/

Short Encodings of Evolving Structures Accesion For

NTIS CRA&

Daniel D. Sleator .oTIJC TAB 0

Robert E. Tarjan 2-Ad Usan

William P. Thurston And^

Dliz~.ibutlo n I

April 26, 1990 Availability Codes

Avail and I or
DISt Special

Abstract A-1 A
J A derivation in a transformational system such as a graph rammar may be redun-

dant in the sense that the exact order of the transformations , ay not affect the final
outcome; all that matters is that each transformation, when applied, is applied to the

correct substructure. By taking advantage of this redundancy, we are able to develop
an efficient encoding scheme for such derivations. This encoding scheme has a number

of diverse applications. It can be used in efficient enumeration of Combinatorial objects
or for compact representation of program and data structure traisformations. It can
also be used to derive lower bounds on lengths of derivations. We slow for example that

S "iT(n log n) applications of the associative and commutative laws are required in the worst
case to transform an n-variable expression over a binary associative, commutative o-"

._ tion into some other equivalent expression. Similarly, we show that 41(n log n) diagonal

ip's are required in the worst case to transform one n-vertex numbered triangulated
planar graph into some other one. Both of these lower bounds have matching upper
bounds. An O(n log n) upper bound for associative, commutative operations was known

previously, whereas we obtain here an O(n log n) upper bound for diagonal flips. , j)

'Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. Research supported
in part by the National Science Foundation under grant CCR-8658139, by the Defense Advanced Research
Projects Agency, monitored by the Space and Naval Warfare Systems Command under contract N00039-87-
C-0251, and by DIMACS, a National Science Foundation Science and Technology Center, Grant No. NSF-
STC88-09648.

2 Computer Science Department, Princeton University, Princeton, NJ 08544 and NEC Research Institute,
Princeton, NJ 08540. Research at Princeton University partially supported by the National Science Foundation,
Grant No. DCR-8605962, the Office of Naval Research, Contract No. N00014-87-K-0467, and by DIMACS.

3 Mathematics Department, Princeton University, Princeton, NJ 08544. Research partially supported by
the National Science Foundation, Grant No. DMS-8806067.01.

EIL1

1. Introduction

The object of this paper is to study succinct representations of derivations in transforma-
tional systems. To model transformational systems, we use graph grammars [2]. Roughly
speaking', a graph grammar consists of a finite set of productions {Li -+ Ri}. Each produc-
tion Li -- R, consists of a connected graph Li, called the left side of the production, and
a graph R,, called the right side of the production. A production Li --+ R, is applicable to
a graph G if G contains a subgraph isomorphic to Li. The production is applied to G by
replacing an occurrence of Li in G by a copy of R,. (There may be more than one way of
applying a production to G, since G may contain more than one copy of the left side.) A
derivation is a sequence of graphs G = Go, G1, G2,. • -, Gm = G' such that each Gi is obtained
from G.-I by applying one production once. The derivation transforms graph G into graph
G'. A particular application of a production during a derivation is called an action.

Let r be a fixed graph grammar, and let G be a fixed starting graph of size n. Consider
the collection R(G, r, m) of all graphs obtainable from G by derivations of length m or less.
Our main result is an efficient method of encoding any graph in R(G, r, i). To encode any
such graph uses O(m + log (n)) bits. (In most cases of interest, m > n, and the second
term in this bound is zero.) This bound is an improvement by a logarithmic factor over the
obvious bound of O(m log s), where s > n is the size of the largest graph occurring in the
derivation [9]. This logarithmic improvement is crucial in obtaining the tight lower bounds
discussed below.

Our encoding represents an equivalence class of derivations obtained by permuting com-
mutative applications of the productions. The efficiency of such an encoding arises from
the fact that there may be many derivations equivalent to any given one, a fact that follows
from the localized nature of applications of the production rules. For simplicity we formulate
our result in the setting of labeled directed graphs; it holds for more general combinatorial
structures such as hypergraphs and simplicial complexes, however.

Our result has a number of general and specific applications, both theoretical and prac-
tical. Our main theoretical application is in demonstrating the existence of pairs of graphs
that are far apart, in the sense that any derivation of one graph of the pair from the other
must take many actions. If N(G) is a lower bound on the number of graphs derivable from a
graph G of size n, then there is a graph G' such that any derivation of G' from G has length
11(log N(G) - n). This is because our encoding scheme implies that the number of graphs
derivable from G' by derivations of length m or less is at most cn+m, for some constant c
that depends only on the grammar and not on m and n.

Our first application involves transformations of arithmetic expressions. Consider the
collection of fully parenthesized expressions of n variables over an associative, commutative
binary operation. A move consists of applying either the commutative law (exchanging
two subexpressions that are combined by the operation) or the associative law (erasing a
pair of matching parentheses to put three expressions at the same level, and adding a new
pair of parentheses to alternatively regroup this triple). We show that given any n-variable

'Section 2 gives a precise definition of the form of graph grammar that we use.

2

expression E, there is an equivalent expression whose distance from E in this metric is
Q(n log n). This solves an open problem of Culik and Wood [11, who obtained a matching
upper bound. Thus the worst-case distance between two equivalent expressions is 0(n log n).
This contrasts with the corresponding bound of 2n - 0(1) if commutativity is not allowed
[6].

As a second application of our lower bound, we consider the collection of numbered
triangulations of the plane, transformed by the "flip" operation. This operation removes
an edge, thereby creating a quadrilateral face, and replaces it with the other diagonal of
the face. A flip is only allowed if it does not create a multiple edge. Our encoding method
proves that there exist pairs of n-vertex triangulations that are SI(n log n) flips apart. We
show, furthermore, that this bound is tight by giving a method for converting any n-vertex
triangulation into any other in 0(n log n) flips. This improves the previous 0(n 2) upper
bound of Wagner [8].

We envision several other applications of our technique. First, it can be used to efficiently
encode graphs or other combinatorial structures that are close to a given one (in the sense
of being obtainable by a small number of transformations). Such encodings may be useful in
situations that require the representation of multiple versions of a structure, as in program
transformation systems and other applications of persistent data structures [3]. Second, it
provides a way to enumerate graphs of various kinds that are generated by graph grammars
or other such transformational systems. By enumerating our encodings rather than enu-
merating sequences of productions, all of the desired graphs will be generated, but with far
fewer redundant copies of isomorphic graphs.

The remainder of this paper consists of five sections. In Section 2 we give a precise for-
mulation of graph grammars and graph grammar derivations, describe our encoding scheme
for derivations, and use this to prove upper bounds on the number of graphs obtainable
by short derivations. Section 3 gives several refinements and improvements of our method.
Sections 4 and 5 show how the encoding scheme applies to prove our lower bound results for
expressions and plane triangulations. Section 6 contains our upper bound on the distance
between plane triangulations; it is independent of the rest of the paper.

2. Encoding Graph Derivations

We shall be concerned with graphs that are undirected and of degree at most b (a fixed
constant independent of n). Each end of each edge is labeled with an integer called an
edge-end label. The edge-end labels incident on a vertex are distinct and between 1 and b
inclusive. It will be useful to be able to refer to half of an edge. Each such half-edge has
one end vertex from the original edge, and one edge-end label. We allow the graph to have
multiple edges between the same pair of vertices, and even to have self-loops. (It is easy to
modify our construction to disallow such structures, although doing so would only weaken
our lower bounds.)

A graph grammar (usually denoted by 1) is a finite set of productions {L, --+i Rli
1,2,... }. The ith production is comprised of three parts: Li, the left side of the production;

3

R, the right side of the production; and -i, the correspondence of the production. The
three parts of a production have the following characteristics:

Li: This is a connected, undirected, edge-end labeled graph, with degree bounded by
b. Strictly speaking, Li is not a graph, because it has a set of half-edges that have
only one end vertex. The one end vertex of each half-edge that is attached to a
vertex of Li has an edge-end label.

R : This is also a graph with edge-end labels, and half-edges, of which it has the same
number as Li.

-i: This is a one-to-one map between the half-edges of Li and those of Ri.

The production Li -"+i R applies to a graph G if G contains a set of vertices S such that
G(S) (the subgraph induced by S in G) is isomorphic (including edge-end labels) to Li. The
induced subgraph G(S) is most simply defined by retaining half of every edge incident to
a vertex in S. The half-edges of G(S) come from the edges of G with one end-point in S
and one not in S. The production is applied by replacing this occurrence of Li in G by R,
where each half-edge of R, is attached to a half-edge of G - G(S) just as the corresponding
half-edge of Li was attached. Sections 3 and 4 give examples of specific graph grammars.

Each vertex occurring in an Li has a unique position number from the set {1,2,... ,c},
where c is the total number of vertices in all left sides. The position numbers will be used to
uniquely specify a vertex in a production. The vertices of each R, are also numbered 1, 2,...
within each production. These numbers are the right position numbers.

A derivation is a sequence of graphs G = Go, G 1,... , Gn = G' such that each Gi is
obtained from Gi- by applying one production once. An action is a particular application
of a production during the derivation. The derivation transforms G into G'. The length of
such a derivation is m, the number of actions in it.

We shall construct a pair of functions ENCODEG,r and DECODEG,r. The function
ENCODEG,r takes a derivation D that transforms G into some other graph G', and returns
a string of symbols from the alphabet E = {0, 1, 2,..., c} of length n + r .m. Her. n is the
number of vertices of G, m is the length of the derivation D, c is the number of vertices in
left sides of r, and r is the number of vertices in the largest right side of r. This sequence
is called the encoding of the derivation. The function DECODEG,r takes as input such an
encoding and returns the graph G'. That is,

DECODEG,r(ENCODEG,r(D)) = G'.

For our purposes it is useful to think of the process of applying a production as destroying
vertices (the ones that are matched to the vertices of Li) and creating new and different
ones (the ones introduced by A). The actions of a derivation D of length m are numbered
1, 2,..., m in the order in which they occur. Each vertex that is created during the derivation
can be identified uniquely by specifying the number of the action that created it and the

4

position number of the vertex in R, that created it. This is the name of the vertex. The
required vertices of an action are the vertices that are destroyed by it. An action is said to
be ready at some time during a derivation if all of its required vertices exist at that time.
Readiness implies that the entire copy of Li that is to be replaced (including all of its edges
and half-edges) is present as well.

Lemma 1 Consider a derivation D that transforms G into G'. If the actions of D are
reordered in any way so that each production is ready when it is applied, then the new
derivation also transforms G into G'.

Proof. By induction it is sufficient to prove that if at and at+, (two consecutive actions of
D) are such that none of the required vertices of action at+, is created by at, then if these
actions are swapped the resulting derivation also transforms G into G'. Since either order is
allowed, we know that those vertices created by at are not used by at+, and those created
by at+, are not used by at. It follows that the actions commute, since they do not involve
any of the same vertices. 0

We can now give an explicit algorithm for computing the encoding of a derivation D.
First, the actions of D are numbered, the vertices of the derivation are named, and the
required vertices of each action are computed.

Our encoding algorithm will assign to each vertex of the derivation a unique number.
First, the vertices of G are numbered {1, 2,... n} in an arbitrary order. (The same ordering
must be used by the decoding procedure described below.) The remaining vertices are
numbered in conjunction with the constrtction of a canonical derivation D', which is a
reordering of the actions of D.

The actions of the canonical derivation D' are computed one by one. At any time it
is easy to determine which actions are ready; these are the ones whose required vertices
exist. Let q be the ready action that destroys the lowest numbered vertex among all ready
actions. This action is the one chosen to be the next action of D'. This action is applied to
the graph, and the vertices created by it are now numbered consecutively starting after the
largest vertex number used thus far. (If several vertices are created by q, they are numbered
in the order of the right position numbers in the right side of the production that created
them.)

After computing the canonical derivation D', the algorithm proceeds to compute a label
for every vertex that occurs in the derivation. The label of a vertex v is zero if v is not
destroyed by any action in the derivation. Otherwise it is the position number of the role
played by v in the production that destroys it.

The desired encoding is a list of at most n + r • m labels of all the vertices in increasing
order by vertex number.

We can now describe the decoding procedure. This algorithm takes the graph G (with
vertex numbers that agree with those of the encoding procedure), the grammar r, and

5

the encoding (the list of labels), and determines G'. The procedure works by constructing
the canonical derivation D', from which it is easy to get G'. As in most data compres-
sion/decompression methods, the decoding algorithm mimics the behavior of the encoding
algorithm step-by-step.

The crucial fact about the labels of the vertices existing at any time during the canonical
derivation is that from these it is possible to determine exactly which actions were ready
at the corresponding stage of the encoding process. This is accomplished by the following
matching procedure:

If a vertex v has a non-zero label, the label determines i, the production that
eventually destroys v, and also the role v plays in this production. For each such
vertex, check its neighborhood to see if it is isomorphic to Li (including edge-end
labels). This check is easy to do since we know which vertex of Li must match v,
Li is connected, and there are edge-end labels to follow. (Recall that the edge-
end labels incident to a vertex are disjoint.) If such a subgraph is found, then
the labels of these vertices are checked to see if they match the position numbers
of the roles that they are supposed to play in the proposed action. If all of these
tests are passed, then the action is ready.

Lemma 2 The matching procedure determines the ready productions that existed at the
corresponding stage of the encoding process.

Proof. If an action is ready, then the matching procedure will certainly find it, because the

vertices corresponding to the left side of the ready action will exist and will be labeled in a
way consistent with all the conditions checked above.

On the other hand, suppose that the check described above is satisfied starting from
some vertex v. Let i be the production indicated by the label of v, and let S be the set of
vertices that form the subgraph isomorphic to Li. We claim that in any continuation of this
derivation all vertices of S must be destroyed simultaneously by a single action. Since all
these vertices are destroyed by one action, this action must be ready now.

It remains to show that all vertices of S must be destroyed simultaneously. Consider the
first action a in some continuation of the derivation that destroys some vertex w of S. Since
a is the first action involving the vertices of S, at the moment action a is applied, all of
the vertices of S will exist (and have the same labels). From the vertex w the matching
algorithm described above will construct the set S. There is no other possible matching
pattern involving w. Therefore the action a destroys all the vertices of S simultaneously. 03

Now, given that we know the ready productions and the numbering of the vertices of the
current graph, it is easy to find q (the next production of D') because it is the ready action
that destroys the lowest numbered vertex. This action is applied to the graph. The vertices
created by it are numbered sequentially (as in the encoding procedure) and are labeled as
specified by the encoding. This step is repeated to determine all of the productions of D'.
The process terminates when there are no ready productions.

6

The following theorem, which bounds the number of graphs obtainable from a given one
as a function of the length of a derivation, is a consequence of our encoding scheme.

Theorem 1 Let G be a graph of n vertices, r be a graph grammar, c be the number of
vertices in left sides of r, and r be the mazimum number of vertices in any right side of a
production of r. Let R(G, r, m) be the set of graphs obtainable from G by derivations in r
of length at most m. Then IR(G, r, m)j < (c + 1)n+' "T .

Proof. Encode the derivation using the scheme described above. The length of the encoding is
at most n+r -m symbols. This encoding can be padded with zeros so that its length is exactly
n + r • m. (This will not interfere with the decoding process, since it is self-terminating.)
The alphabet is of size c + 1, so the number of such encodings is (c + 1)n+ r '". Each graph
reachable by m or fewer actions is the outcome of applying the decoding procedure to one
of these encodings. Therefore the number of such graphs is at most the number of such
encodings. 0

3. Generalizations and Improvements

This section describes various extensions and improvements to our encoding scheme, most
of which will be used later in this paper.

3.1. Encoding short derivations

Our encoding scheme can be modified to make it more efficient when the length of the
derivation is short compared to the size of the starting graph. In this case most of the labels
of the vertices of the initial graph are zero. The more efficient encoding specifies which
vertex labels are non-zero, and only includes labels for these in the vertex label list. Let k
be the number of vertices that have non-zero label in the initial labeling of G, and let m, n,
r and c be defined as above. Then the size of this encoding (in bits) is:

log 2 nl + [log2 () 1 + (k + mr) log2(c + I)1.

The first term is for bits to encode k, and the second term encodes the subset of vertices
with non-zero) labels.

Theorem 2

log IR(G, r, m), = O(log (n) + m),

where R(G, r, m) is the number of graphs obtainable by derivations of length at most m. in
grammar r starting from a graph G of n vertices. (If m > n then log (n) is interpreted as

zero).

7

Proof. Theorem 1 shows that log IR(G, r, m)l = O(n + m). If c. m > n then O(n + m)=

O(m) = O(log (n) + M).

If c. m < In then we use the encoding scheme described above. Since each action causes
at most r vertices of G to have non-zero labels we know that

1
k < r . m < _n.

It follows that
(k + mr) [og2(c + 1)1 = O(m),

and that
log 2 () log 2 (n _log 2 () = r log2 .

Finally, we know that log2 n < log2 (a). The theorem follows from these inequalities and
the bound on the number of bits used by the efficient encoding scheme. 0

3.2. Leaders and followers

The labels on the set of vertices destroyed by an action contain redundant information. For
example, each label of this set has sufficient information to determine which production is
the one that destroys all of them. There is a way to eliminate this redundancy and thereby
reduce the size of the encoding in most cases.

The new encoding algorithm begins by computing the standard encoding described above.
It then applies a map f to each symbol of the encoded string, giving the new encoding. It
remains to define the map f.

Let one vertex of each Li be chosen to be the leader, and let all the other vertices be
followers. For each Li choose a spanning tree. (This can be done, since each left side is
connected.) For each follower vertex v, let DIR(v) be the value of the edge-end label of the
v end of the first edge on the path (in the spanning tree) from v to the leader of Li. (In
other words, starting from any vertex in Li, following the DIR(.) direction repeatedly will
lead to the leader.)

The map f is defined as follows (Irl is the number of productions of F, and v(x) is the
vertex of a left side with position number x.):

0O if X = 0

f = R if v(x) is the leader of Li
Irl + DIR(v(x)) if v(x) is a follower

The decoding algorithm must be modified to accommodate this new encoding. The only
difference is in the matching step, which is revised as follows:

8

For each vertex v that is a leader, check its neighborhood to see if it is isomorphic
to Li. If such an isomorphic subgraph is found, then the labels of these vertices
are checked to see if they are all followers, and that if a directed edge is drawn
from each follower w in the direction of DIR(w) (which is the label of w minus

FIr) then the result is a directed spanning tree rooted at v. If all of these tests
are passed, then the action is ready.

We now need to verify that Lemma 2 still holds; that is, that the sets of vertices satisfying
the new matching procedure above exactly correspond to the ready actions. The first part
of the proof remains easy; any ready action of the original derivation gives rise to a match
in the above procedure. On the other hand, a match also indicates that the corresponding
action is ready. Let S be the set of matched vertices. Starting from any follower vertex
w E S, the entire set S can be constructed uniquely. Similarly, from the leader vertex v of
S the set S can be uniquely constructed. This is a sufficient condition to guarantee that all
vertices of S are destroyed simultaneously, which (as shown above) is the condition that we
need in order to prove that the action is ready.

It may be possible to further reduce the alphabet size by making use of the flexibility
that exists in choosing which spanning tree to use on each left side. The number of labels
can be reduced from IFI + d + 1 to I rI + d' + 1, where d' is the number of different directions
used in the directed spanning trees of the left sides.

The leader-follower technique applies in any situation in which there is a production with
more than one vertex on the left side. It may decrease the size of the label alphabet, but it
can never increase it. If the technique applies, then it can be used in conjunction with the
next technique to further reduce the alphabet size.

3.3. Eliminating the zero label

Suppose that for any graph occurring in a derivation using r, there exists a way of labeling it
with non-zero labels so that no production is ready. Then the zero label can be eliminated.
The encoding procedure must be modified slightly to eliminate the zero labels, while the
decoding procedure will remain the same.

Here is how the encoding procedure is revised. First compute the labeling of all the
vertices as before. The vertices with zero labels are exactly those that end up in G', the
final graph of the derivation. These are called the terminal vertices. Compute the labeling
of G' with non-zero labels so that no production is ready. For each terminal vertex, replace
its label with that terminal label just computed in G'.

It is easy to see that this works by reviewing the proof of Lemma 2. The proof only differs
at the point where it is shown that if the labels match the pattern of some left side Li, then
the production i applied to that set of vertices S is ready. The crucial statement is that if
this situation occurs, then all the vertices of S must be destroyed simultaneously. This is
still true. All of the vertices cannot be terminal ones, since their labels admit the application
of a production. The set cannot be comprised of both non-terminals and terminals, because

9

then the non-terminals would never be allowed to change. Therefore all the vertices of S
must be non-terminals, and the previous argument shows that the production is ready.

Notice that in any situation in which the leader-follower technique applies, we can elimi-
nate the zero label. This is done by labeling all the terminal vertices to be followers.

3.4. Tags

It is sometimes useful to carry extra information along during a derivation. (Sections 4 and 5
give examples of this.) To accommodate this, we allow each vertex to have a tag associated
with it. Each production also supplies an arbitrary function that is used to define the values
of the tags of the vertices created in terms of the tags of the vertices destroyed. Because the
tags are computed locally (as a function only of tags of the vertices on the left side of the
production) the commutativity that we have exploited in constructing our encoding is still
present. Therefore our encoding method and theorems apply to tagged graphs without any
changes.

4. Expressions over an Associative, Commutative Operation

Let X = {x, x 2,... ,I} be a fixed set of variables, let E) be a binary operation, and let En
be the set of fully parenthesized expressions over D in which each variable xi occurs exactly
once. We consider the problem of estimating how many applications of the associative and
commutative laws are required to transform any expression in En into any other.

To make this problem somewhat more concrete, we restate it as a problem on bi-
nary trees. Our binary tree terminology is that of Knuth [5.] Let Tn be the set
of full binary trees with n external nodes, numbered 1,2,...,n. Any permutation of
1,2,... ,n2 is allowed; thus IT=I = . (n - 1)!(2-) [4]. We permit two trans-
formations of a tree T E T,: a twist, in which the left and right subtrees of a spec-
ified internal node are exchanged, and a rotation, in which an internal node changes
places with one of its children while symmetric order in the tree is preserved. (See
Figure 1.) The problem is to estimate the minimum number of twists and rotations
needed to transform any tree in Tn into any other. We denote this number by Rn.

10

twist
x4 - x4

X1 Xl

X2 X3 X2 X3

((X 1 e (X2 eX 3)) (X 4) (X4 o (X I (X 2 ex 3)))

.0

X1

X 4
X2 X 3

(x1 e(X2 X3)eX4))

Figure 1: Illustrating a twist and a rotation.

This problem is equivalent to the expression transformation problem. The isomorphism
(also shown in Figure 1) between expressions and trees is the standard one - an external node
labeled i corresponds to the expression "xi"; an internal node corresponds to the expression
(El D Er), where E and E, are the expressions corresponding to the left and right children
of the node. A twist corresponds to the application of the commutative law; a rotation, to
an application of the associative law.

Culik and Wood [1] derived an O(n log n) bound on &,. We shall derive a matching
Q(n log n) bound. (Culik and Wood actually worked with a slightly different transforma-
tional system, but their result applies to our system, and our result applies to theirs.)

These transformations can be represented as productions in a graph grammar. The graphs
we consider differ slightly from the binary trees described above. To transform a tree into
the corresponding graph, add an extra node of degree one, called the superroot, and connect
it to the root of the tree. The edge-end labels of the three edges incident to an internal
node are 1, 2, and 3, for the edges connecting the node to its left child, right child, and
parent, respectively. (The superroot is the parent of the root.) The n + 1 edge-ends that
are incident on vertices of degree one are irrelevant, since these will never be involved in any
production. The vertices of degree one are tagged with a name that will be carried along
during the derivation. The following figure shows an expression tree and the corresponding
graph.

11

superroot

3

X
4

Xl

3 X4

X2 X X 1
2

X2 X3

Figure 2: A tree and its corresponding graph.

The grammar to represent this process has three productions, one for a twist, one for a
left rotation, and one for a right rotation. These productions are shown in Figure 3.

3 3

3 3

3 3

22

Figure 3: The productions for a twist and rotations. The correspondence between the half
edges is obtained by pairing the topmost edges, and walking clockwise simultaneously around
the left and right diagrams.

From Theorem 1 it immediately follows that starting from a tree with n external nodes,
the number of trees reachable in m or fewer twists and rotations is at most 6 2n+2m+1. The
leader-follower technique can be used to prove a tighter bound. By choosing the upper vertex

12

of the left side of each rotation to be the leader, and the other to be the follower, the label
alphabet size is reduced to five. The zero elimination technique now applies. This reduces
the alphabet size to four, and the bound to 4

" +2"+1.

This can be further improved by specializing the encoding and decoding procedures for
this application. We do not need to encode the labels for the n leaves or the superroot,
because these are not involved in any actions. This improves the bound to 4"+2"1'- . The
total number of bits needed to encode any tree derivable in m or fewer moves is at most
2n + 4m - 2.

We summarize this result in the following theorem:

Theorem 3 For any expression E of n variables:

1. The number of different arithmetic expressions obtainable by m applications of the
commutative and associative laws starting from E is at most 2 2n+4m-2 .

2. There exists an expression E' such that the number of operations required to trans-
form E into E' is Q(n log n).

Proof. Part 1 follows from the prior discussion. Part 2 follows from the fact that there are
(n - 1)! (2n.,2) expressions obtainable starting from E. In order to obtain all of them in m
moves we must have

22n+4m-2 > (n - 1)!(n)- 2

2n + 4m - 2 = S(n log n)

m = f2(n log n).

0

5. Numbered Plane Triangulations: A Lower Bound

A numbered plane triangulation (henceforth just called a triangulation) is an undirected
graph embedded in the plane all of whose faces are triangles and whose vertices are numbered
sequentially from 1. We denote by P, the set of all n-vertex triangulations. A flip of an
edge in a triangulation is the operation of removing an edge, thereby forming a quadrilateral
face, and adding the other diagonal of the face. (See Figure 4.) A flip is allowed only if it

13

does not introduce a multiple edge.

It

Figure 4: A flip in a triangulated graph, and the corresponding operation in the dual graph.

Let F,. be the minimum number of flips needed to convert any n-vertex triangulation into
any other. We wish to estimate F,. It is not hard to establish that F,, is 0(n2); Wagner [8]
gave a construction. We shall show in Section 6 that F,, is 0(n log n); in this section, we use
our succinct encoding approach to prove that F, is Q(n log n).

There is no upper bound on the degree of a vertex in a plane triangulation. Therefore,
in order to apply our technique, we shall work in the space of planar graphs that are dual
to plane triangulations. In such a graph, every vertex has degree three. (Each vertex of the
dual graph (a face in the original graph) maintains as a tag the set of vertex numbers of the
vertices in the original graph to which it is incident. These tags along with the dual graph
are sufficient to reconstruct the original numbered plane triangulation. This observation is
required in order to get a reliable upper bound on the number of reachable numbered plane
triangulations.) The edge-end labels of the initial graph are chosen arbitrarily, subject to the
constraint that walking one step clockwise around a vertex increases the label by 1 (modulo
3) This ordering of the edge-end labels encodes the embedding of the plane triangulation.

There are several different ways to represent sequences of diagonal flips as derivations in
a graph grammar. One way is shown in Figure 5 below.

X3X

> __---------

Figure 5: Two productions for representing flip sequences as graph grammar derivations.

14

This method uses two productions, one for doing the flip, and the other one for preparing
the edge-end labels to allow the flip. Each flip in the original derivation may correspond to
as many as five actions: two to cycle the edge-end labels on one end, two for the other end,
and one for the actual flip. A sequence of m flips turns into a sequence of as many as 5m
actions. A plane triangulation of n vertices has 2n - 4 faces. Therefore the dual graphs in
which the derivations take place have 2n - 4 vertices. The number of vertices in left sides
of productions (c) is three, and the number of vertices in the largest right side (r) is two.

We can now apply Theorem 1 to bound the number of n node numbered plane trian-
gulations reachable in m flips by 4 2n+1 °

,
4

1
. This implies that, for any triangulation P, at

most 42n+10m- 4 distinct triangulations can be obtained by doing m or fewer flips. Since Pn
contains at least (n - 3)! triangulations (there are this many different sorted wheels, see Sec-
tion 6), there must be at least two triangulations, and indeed many pairs of triangulations,
that are QI(nlogn) flips apart; that is, Fn = Q2(n log n).

The bound on the number of reachable configurations can be tightened significantly by
the use of a different graph grammar. This grammar is shown in Figure 6.

15

- If

Figure 6: Six productions give a more efficient bound on flip distance.

15

Because this grammar includes each of the six ways that the ends of the edge to be
flipped can be labeled, there is a one-to-one correspondence between diagonal flips in the
plane triangulation and applications of one of the productions to the dual graph. Using the
leader-follower trick and eliminating the zero label reduces the number of different labels to
nine. Each production creates two new labels, so our improved encoding scheme proves that
the number of graphs reachable in m moves is at most 9 2n+2--4.

It turns out that leader vertices are not necessary at all. An encoding without leaders
can be made to work by using the convention that a production involving a pair of adjacent
vertices is ready if and only if their labels mutually point at each other. To verify that
the zero label (indicating a terminal vertex) is not necessary, we need to show that there
exists a labeling of any planar graph of degree three with follower labels such that no pair
of adjacent vertices point to each other. This can be done as follows. If the graph is a tree,
choose a place in the middle of some edge, and make all the vertices point away from this.
If the graph has a cycle, choose the labels of the vertices on the cycle to point consistently
around it. Now choose a subset of the remaining edges so that these edges plus the cycle
form a subgraph with all of the vertices and exactly one cycle. (This is a spanning tree with
one extra edge.) The follower label on a non-cycle vertex points toward the cycle along the
path in the tree. This gives the required match-free labeling. This argument bounds the
number of reachable configurations by 3 n+2m-4 .

The set of configurations reachable in m or fewer flips is not changed if we do not allow
a sequence to make a flip then immediately make another flip that cancels it out. This
observation means that of the nine possible labelings of the pair of vertices resulting after a
move, we can restrict our attention to eight of them. This improves the bound to 3 2n-4 8 m.

We summarize the results of this section in the following theorem.

Theorem 4 For any plane triangulation T of n vertices:

1. The number of different plane triangulations obtainable by m or fewer flips starting
from T is at most 3 2n-4 8 m.

2. There exists a plane triangulation T' such that the number of flips required to trans-
form T into T' is fl(n log n).

6. Numbered Plane Triangulations: An Upper Bound

Theorem 5 Let G1 and G2 be two n-vertex numbered plane triangulations (with no multiple
edges). If n > 5 then there is a sequence of O(n log n) diagonal flips that transforms G1 into
G 2 in such a way that there are no multiple edges in any intermediate state.

Proof. We shall show that any such triangulation G can be transformed into a particular
canonical form called a sorted wheel in O(n log n) diagonal flips. Using this transformation

16

we can transform G, into the sorted wheel, then transform the sorted wheel into G2 (using
the transformation in reverse).

A wheel of n > 5 vertices is a planar graph that has two special vertices called hubs, and
n - 2 other vertices called rim vertices. There is an edge from each hub to each rim vertex
(these are the spokes). There are n - 2 other edges in the graph, and these form a simple
cycle through all of the rim vertices. There is a unique way of embedding the wheel in a
sphere.

A sorted wheel of n vertices is a wheel with labeled vertices embedded in the sphere. The
hubs are labeled 1 and n, and the vertices of the rim are labeled 2,3,.-., n - 1 in clockwise
order when viewed from hub 1.

We first consider the special case of n = 5. Any graph G of five vertices satisfying the
hypotheses of the theorem is a wheel. We show this by first applying Euler's formula, which
implies that G must have six triangular faces and nine edges, and that the sum of the
degrees of the vertices is 18. No vertex can have degree two, because then its two neighbors
would be connected by two different edges, which violates the assumption that G has no
multiple edges. Furthermore, no vertex can have degree greater than four. It follows that
the multiset of the degrees of the vertices is {3, 3,4,4, 4}. The three vertices of degree four
must be attached to all the other vertices in the graph. This accounts for all of the edges
incident on the vertices of degree three, which therefore must not be neighbors. It follows
that the graph is a wheel in which the vertices of degree three are the hubs, and the vertices
of degree four are the rim.

We finish the proof for n = 5 in two stages. First we show that we can make vertices 1
and 5 the hubs of the wheel. Second we show that if the resulting structure is not the sorted
wheel (it must be its mirror image), then it can be transformed into the sorted wheel.

If vertices 1 and 5 are on the rim, then a diagonal flip of the edge between them makes
them the two hubs. If 1 is a hub and 5 is on the rim, then we flip the edge between the
other two rim vertices creating a configuration where both 1 and 5 are on the rim, which we
handle as above. A similar technique suffices if 5 is a hub and 1 is on the rim.

The following diagram shows how the mirror image of the sorted wheel of five vertices is
transformed into the sorted wheel by the application of five diagonal flips.

17

3 I3 I

3 1 3

We are now ready to consider the case n > 6. The transformation of the graph G into a
sorted wheel is broken up into three phases: constructing a Hamiltonian circuit, transforming
the Hamiltonian circuit into a wheel with hubs 1 and n, and sorting the rim of the wheel.
These three steps are described in the following three sections.

6.1. Constructing a Hamiltonian circuit

By Tutte's Theorem on planar graphs [7] (and by a theorem of Hassler Whitney [10]), any
4-connected planar graph has a Hamiltonian circuit. The graph G under consideration is
3-connected, since it is planar, triangulated, and has no multiple edges. Unfortunately, it
may not be 4-connected. If it is not 4-connected, then it must have a separating triangle;
that is, a triangle whose removal separates the graph. We shall show how to transform the
given graph G into one that has no separating triangles by making O(n) diagonal flips. This
will complete our construction of the Hamiltonian circuit.

The graph G is given to us embedded on a sphere. We choose a face arbitrarily and map
the embedding on the sphere to an embedding on the plane such that the chosen face is
infinite. Each separating triangle of G partitions the faces and remaining vertices of G into
two components. The interior component is the one not containing the infinite face. Let I,
be the set of faces interior to a separating triangle T1, and let 12 be the set of faces interior to
a separating triangle T2. Either I, and I2 are disjoint, or satisfy I C '2 or 12 C I,. It follows

18

from these relations that there must always be a set of innermost separating triangles, i.e.,
those that do not contain another separating triangle in their interior.

Our algorithm for eliminating separating triangles works from innermost separating tri-
angles outward. A diagonal flip operation is applied to an edge of one of the innermost
separating triangles. The chosen edge will be any one that does not introduce a new sep-
arating triangle. We shall prove below that there always exists such an edge. It follows
immediately that this algorithm eliminates all of the separating triangles in 0(n) diagonal
flips, because each flip reduces by at least one the number of edges that are in separating
triangles.

It remains to show that there is always an edge of an innermost separating triangle such
that if that edge is flipped then no new separating triangle is created. The following case
analysis shows this. Consider an innermost separating triangle with vertices a, b, and c. Let
d be the vertex inside the triangle such that triangle (a, b, d) is empty. (There must be such
a vertex since triangle (a, b, c) is a separating triangle, and there must be something inside
of it.) Similarly, there must be a vertex e outside of triangle (a, b, c) such that (a, b, e) is an
empty triangle. The figure below shows the situation.

e

ab

We shall assume that flipping edge (a, b) creates a new separating triangle, and show that
flipping one of the other edges does not create one. We know that the separating triangle
that was created by flipping (a, b) must be (d, c, e), and that (d, c) and (c, e) are edges of
the original graph. Triangles (a, d, c) and (b, d, c) must be empty, otherwise (a, b, c) would
not be an innermost separating triangle. We now know that the structure of the graph near
triangle (a, b, c) is:

e

b

d

Since the graph has at least six vertices, we know that there must be another vertex f
outside of triangle (e, b, c) such that (b, f, c) is an empty triangle. Now it is clear that flipping
edge (b, c) cannot create a separating triangle.

19

This completes our construction of a Hamiltonian circuit.

6.2. Transforming the Hamiltonian circuit into a wheel with hubs 1 and n.

Given that there is a Hamiltonian circuit, we can regard the graph as consisting of a cycle and
two triangulations of an n-gon, one on each side of the cycle. By definition, a triangulation
of a polygon has no interior vertices. A coning triangulation of a polygon is one in which
all of the interior edges of the polygon are incident to the same vertex. We shall make use
of several facts about diagonal flips in triangulations of a polygon [6]:

Fact 1: Any triangulation of an n-gon can be transformed into the coning triangulation
with all edges incident on a vertex v by making at most n - 2 diagonal flips,
each of which increases the degree of v by one.

Fact 2: Any triangulation of an n-gon can be transformed into any other in at most
2n - 4 diagonal flips.

Fact 3: In any triangulation of an n-gon, there is a vertex v such that v is incident to
only two edges, and those are the boundary edges that connect v to its two
neighbors around the polygon.

Call the two triangulations of the n-gon that comprise the current version of G the top
triangulation and the bottom triangulation. Let v be a vertex such that Fact 3 holds for v
in the top triangulation. Now we can apply Fact 1 to vertex v in the bottom triangulation,
to transform that triangulation into a coning triangulation to vertex v. This process will
never introduce a multiple edge, because all the new edges added to the bottom side of the
triangulation are incident to vertex v, which has no edges on the top side. The situation is
represented by the following picture:

We now change our definition of the top and bottom sides. We view vertex v as belonging
to the interior of the bottom side, which is a hub with n - 1 spokes connecting v to all other
vertices. The top side becomes a triangulation of an (n - 1)-gon. At least one of vertices 1
or n is on this (n - 1)-gon. Without loss of generality, assume that 1 is on this (n - 1)-gon.
(If 1 is not on this polygon, then the following construction can be fixed by swapping the
roles of n and 1.) Now we transform the triangulation of the (n - 1)-gon (the top side) into

20

a coning triangulation to vertex 1. The result is shown below.

V

We now flip edge (v, 1) and move 1 into the top side. The result is a wheel with hubs 1
and v, as shown below.

V

It remains to transform this wheel into one with vertices 1 and n as the hubs. If v = n
then we're done, otherwise it only remains to replace v by n. We begin by flipping any edge
around the rim of the wheel. The result looks like:

Now we retriangulate the bottom (n - 1)-gon so that it is a coning to n. Then we flip
edge (n, 1), and move n into the bottom half to give the following triangulation:

21

n

This construction works without creating multiple edges as long as the rim of the wheel
is always at least of size four. This is certainly the case since n > 6.

6.3. Sorting the rim of the wheel.

We first give a sequence of four flips that can transpose the order of any pair of adjacent
vertices around the rim of the wheel. The following diagram shows this sequence. This will
work as long as the number of vertices on the rim is at least four.

21109

2f1ls

22

If 6 < n < 15 we can use repeated transpositions to sort the wheel. From now on we
assume that n > 16.

A double wheel is a wheel with two rims, as shown below:

n

The number of vertices in the top rim differs from the number in the bottom rim by at
most one. Furthermore, all the edges in the region bounded by the two rims cross from one
rim to the other.

We shall now show how to use 0(n) diagonal flips to transform a double wheel into a
single wheel. We call this transformation a merge step. The merge allows us to form any
ordering of the vertices around the rim of the wheel subject to the constraint that the order
is consistent with that defined by the orderings on the two rims of the double wheel. That is,
if we traverse the rim of the wheel in clockwise order (from the point of view of, say, vertex
1), then the traversal will encounter all the vertices that came from the bottom rim (top
rim) of the double wheel in the same cyclic order in which they occurred in the bottom rim
(top rim) of the double wheel. A more intuitive way to think of this process is to imagine
two decks of cards (the double wheel) which are shuffled into one (the rim of the wheel).
This is also analogous to the way a merge sorting algorithm combines two sorted subfiles
into a sorted file.

One can also apply the merge step in reverse (an unmerge) to split a wheel into a double
wheel. A wheel can be sorted by applying a sequence of log02 (n - 2)1 unmerge-merge pairs.
(Observe that a merge sort can be implemented using these primitives. Each pass of the
sorting algorithm through all of the data corresponds to one of the unmerge-merge pairs.)

It remains to show how to implement the merge step (never introducing multiple edges)
in 0(n) diagonal flips. An edge (i,j) is called an amicable edge if (1) i is on one side of the
rim of a double wheel and j is on the other side, (2) the quadrilateral obtained by removing
edge (i,j) has one edge on each rim of the wheel and two edges crossing from one side of the
rim to the other, and (3) the other vertex of the quadrilateral on the same side of the rim as
i is counterclockwise from i (with respect to 1). The following diagram shows an amicable
edge (i,.1).

23

n

In any double wheel there must be an amicable edge. By flipping three edges in the
vicinity of an amicable edge we can create an (n - 2)-gon such that the edges on the outside
of the polygon do not connect any pair of vertices of the polygon. When this operation is
applied to the diagram above the result is shown below.

n

It is now the case that we can apply any algorithm for retriangulating the (r, - 2)-gon
between the two rims without fear of creating multiple edges.

We can apply this technique three times to transform a double wheel with one triangu-
lation between the rims into a double wheel with any other triangulation between the two
rims. Let (i,j) be an amicable edge of the initial double wheel. Let (k, 1) be an amicable
edge of the desired final triangulation. (These pairs of vertices may or may not be disjoint.)
Let x and x, be two neighbors on the top rim of the wheel such that x, is a counterclockwise
neighbor of x, and neither x nor x, is i, or k, or a counterclockwise neighbor of either i or j.
Since the length of the rim is at least 7, there must be such a pair. Define y and yc similarly
on the bottom rim.

To transform the triangulation between the rims from any one to any other, we first cut
the double rim at amicable edge (i,j) as shown in the figure above. We then re-triangulate
the region between the two rims such that (x, y) is an amicable edge. Then we close up
the cut of amicable pair (i,j) and open up the one for amicable edge (x, y). We then

24

retriangulate the polygon between the rims so that the pair (k, 1) becomes an amicable edge.
We then close up the cut at amicable edge (x, y), and open up the cut at pair (k, 1). Now
we triangulate the (n - 2)-gon as specified by the desired final triangulation between the
rims. Closing up the cut at amicable pair (k, 1) completes the construction of the desired
triangulation between the rims. This process can never introduce any multiple edges, and it
uses O(n) diagonal flips.

As the desired triangulation between the rims, we choose any on- such that there is an
edge joining each pair of vertices that are adjacent on the rim of the desired wheel. It is
easy to see that there must be such a triangulation between the rims.

The last step of the process is to convert such a double wheel into a single wheel. The
figure below illustrates how this is done. The highlighted edges are those of the rim of the
wheel.

This step does at most one flip for each vertex of the rim of the wheel, and completes the
merging process. This also completes the proof of the theorem. 0

Corollary 1 Let G1 and G2 be two n-vertex numbered plane triangulations (possibly with
multiple edges). There exists a sequence of O(n log n) diagonal flips that transforms G1 into
G2 in such a way that no flip ever creates a self-loop.

Proof. An easy case analysis proves the result for n = 4. We will show that multiple edges
can be eliminated by flipping them one at a time. This takes only a linear number of flips,
since each edge is flipped at most once. The corollary result follows by applying Theorem 5
to the graphs obtained by eliminating the multiple edges from G, and G 2 .

We now prove our claim that if any multiple edge in a plane triangulation is flipped, the
number of multiple edges is reduced. Let el and e2 be a pair of edges between vertices v and
w in a plane triangulation. The cycle (el, e2) divides the vertices (except v and u,) into two
disjoint sets, those on one side of the cycle, and those on the other side. Neither of these
two sets can be empty, since every face of the graph is a triangle. If either edge el or e2 is
flipped, it is replaced by an edge that connects a vertex on one side of the cycle to one on

25

the other side. Since before the flip there were no edges between vertices in these two sets
(they are separated by a cycle) the edge created by the flip cannot be a multiple edge. -

References

[1] Culik, K., D. Wood, A note on some tree similarity measures, Inform. Process. Lett.
15(1982):39-42.

[2] Ehrig, H., M. Nagl, G. Rozenberg, A. Rosenfeld (Eds.) Graph-grammars and their
application to computer science, Lecture Notes in Computer Science 291, Springer-
Verlag, 1987.

[3) Driscoll, J. R., N. Sarnak, D. D. Sleator, R. E. Tarjan, Making data structures persistent,
J. Computer and System Sci. 38(1989):86-124.

[41 Knuth, D. E., The art of computer programming, Vol 1: Fundamental Algorithms,
Addison-Wesley, Reading, MA, 1968.

[5] Knuth, D. E., The art of computer programming, Vol 3: Sorting and Searching, Addison-
Wesley, Reading, MA, 1973.

[6] Sleator, D. D., R. E. Tarjan, W. P. Thurston, Rotation distance, triangulations, and
hyperbolic geometry, J. Amer. Math. Society 1(1988):647-681.

[7] Tutte, W. T., A theorem on planar graphs, Trans. Amer. Math. Soc. 82(1956):99-116.

(8] Wagner, K., Bemerkungen zum Vierfarbenproblem, J. Deutschen Math.-verein.
46(1936):26-32.

[9] Welzl, E., Encoding graph derivations and implications for the theory of graph gram-
mars. Lecture notes in computer science 172 pp. 503-513, Springer-Verlag, 1984.

(10] Whitney, H., A theorem on graphs, Ann. of Math. 32(1931):378-390.

26

